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Abstract

We present a first step towards developing an interactive
piano tutoring system that can observe a student playing the
piano and give feedback about hand movements and musi-
cal accuracy. In particular, we have two primary aims: (1)
to determine which notes on a piano are being played at any
moment in time, (2) to identify which finger is pressing each
note. We introduce a novel two-stream convolutional neural
network that takes video and audio inputs together for de-
tecting pressed notes and fingerings. We formulate our two
problems in terms of multi-task learning and extend a state-
of-the-art object detection model to incorporate both audio
and visual features. We also introduce a technique for iden-
tifying fingerings if pressed piano keys are already known.
We evaluate our techniques on a new dataset of multiple
people playing several pieces of different difficulties on an
ordinary piano.

1. Introduction
Learning to play a musical instrument is a common life-

long goal for many people. Unfortunately, it can also be

out of reach: traditional music pedagogy involves regular,

one-on-one interaction with a skilled teacher, which can

be expensive or impossible for those who live with a lim-

ited budget or in rural areas. While online learning plat-

forms such as Coursera [1] deliver high-quality courses,

they have proven most effective for subjects like introduc-

tory computer science and mathematics, which are tradi-

tionally taught in lectures that can be readily captured on

video and delivered to a large number of students.

Effective automated or online music education, in con-

trast, requires interactive systems that can observe a stu-

dent’s performances and give feedback on how to improve.

While systems for music tutoring have been studied for

some time [4, 6, 14, 14, 23], most of these require special

electronic instruments that can record the notes that a stu-

dent plays, for example through MIDI (Musical Instrument

Digital Interface). Not only do these electronic instruments

require an up-front investment, but they are also limited in

the type of feedback they can provide: learning to play the

piano, for example, requires not just hitting the right notes,

but also using proper technique including posture and fin-

gering. Learning improper technique may prevent a stu-

dent from advancing properly and may cause injury, and

bad habits can be very difficult to un-learn [10].

To make music instruction more affordable for more peo-

ple, we want to develop automated systems that can ob-

serve a student playing any piano — perhaps a second-

hand acoustic piano, for example, or one available in a lo-

cal church or community center — and give feedback on

both technique and musical accuracy, using only common

computer hardware such as a laptop. As a starting point, in

this paper we try to estimate, based on both video and audio

data: (1) which piano keys the student is pressing at any mo-

ment in time, and (2) which fingers they are using to press

those keys. A music tutoring system could then collect these

observations over time to reconstruct the sequence of notes

they play, including both pitches and durations, and how

their fingering compared to those recommended by course

materials.

The first of these problems — keypress detection —

could be easily collected by the MIDI interface of a dig-

ital piano, but we want to handle acoustic instruments as

well. This could also be addressed through analyzing audio

with Automatic Music Transcription (AMT) [5,7,9,33], but

much of this work considers only monophonic instruments,

since recognizing multiple notes sounding simultaneously

(as is common with piano) is a challenge. The second of

these problems is even more difficult. We could require pi-

anists to wear gloves with joint sensors, but these are expen-

sive and would restrict natural hand motion. Depth cameras

could help detect hand pose, but are also additional hard-

ware that would need to be purchased by the student.

In this paper, we explore the idea of using audio and

video data collected from an ordinary consumer laptop to

observe both the notes a pianist plays and the fingerings they
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use to play them. We consider two approaches in particular.

We first introduce a novel two-stream Convolutional Neu-

ral Network that takes video and audio inputs together for

detecting pressed notes and fingerings. We formulate these

two problems as object detection with multi-task learning

rather than standard image classification, because it reduces

the search space for detecting pressed notes and identifying

fingers. In particular, we extend the Single Shot MultiBox

Detector (SSD) [20] to consider both audio signals and im-

age frames to resolve ambiguities caused by finger or key

occlusions, and design the model to focus on a single oc-

tave and hand to reduce the search space. Second, we apply

an existing deep pose detector [28] to the fingering detec-

tion problem, assuming that note presses have been accu-

rately identified. These two techniques offer complimen-

tary strengths and weaknesses: the first is trained end to

end, based on raw video and audio data, while the latter

uses a hand-designed pipeline, but benefits from the addi-

tional data used to train the pose detector. We report ex-

periments measuring recognition accuracy on a dataset of

several pieces of varying difficulty played by multiple pi-

anists, and demonstrate that our approaches are able to de-

tect pressed piano keys and the piano player’s fingerings

with an accuracy higher than baselines.

2. Related Work
2.1. Intelligent Musical Instrument Tutoring

There is a growing body of literature that applies ar-

tificial intelligence technology to teaching musical instru-

ments, including guitar [4], piano [6], and violin [34]. The

purpose of these systems is to help students learn to play

an instrument by guiding them through series of lessons,

and then testing the student’s comprehension by evaluating

how well they can play new pieces of music. Much of the

current literature on intelligent music tutoring pays partic-

ular attention to audio processing for analyzing the user’s

performance [8, 23], although many of these systems re-

quire specifically designed instruments and controllers [8].

Recent developments in Automatic Music Transcription

(AMT) open the possibility that notes played by an acoustic

instrument could be detected based on audio [5,33], but we

believe that an effective tutoring system must also be able to

observe and give feedback on technique, such as fingering

and hand positioning.

2.2. Computer Vision in Music Analysis

Computer vision can play an important role in provid-

ing proper feedback about a student’s technique in play-

ing an instrument. It also can help resolve ambiguities in

the audio signals caused by complex interacting harmon-

ics of polyphonic instruments like the piano. Akbari et
al. created a four-stage image processing pipeline based

on Hough transforms [15] for piano keypress detection [2].

Takegawa et al. attached color markers to the pianist’s fin-

gernails, and then applied a simple color-based technique

with some musical rules for analyzing the pianist’s finger

movements [32]. Johnson et al. used a depth camera with

Histograms of Oriented Gradients (HOG) features for de-

tecting pianist hand posture [16]. However, there have been

few attempts at integrating computer vision with audio sig-

nals to complement the limitations of each feature. Al-

though a few studies have investigated multimodal fusion

for music analysis [24, 35], their approaches are difficult to

generalize to other musical instruments due to hardware re-

quirements [35] or application-specific system design [24].

2.3. Deep Learning in Music Analysis

Deep learning has emerged as a powerful tool for many

AI applications, for everything from object detection [20,

25] to learning motor control policies for robotic applica-

tions [17]. It also has become popular in Music Informa-

tion Retrieval (MIR) research, and many researchers have

applied deep learning for various applications such as auto-

matic music transcriptions of drum [33], piano [12,27], and

chords [36], as well as for music recommendation [19]. Li

et al. [18] used a CNN followed by Long Short-Term Mem-

ory (LSTM) units to “convert” audio into animations of how

a simulated musician might play that music on their instru-

ment. Shlizerman et al. [26] also produced body posture for

piano and violin with LSTM units. Most deep learning ap-

proaches in the field of music analysis, however, have only

focused on audio signals, and only a few deal with multi-

modal fusion for music analysis [22].

3. Approach

Our objective is to detect, at any moment in time, which

piano keys are pressed and to identify which finger is press-

ing each of these keys. We consider these two problems in

sequence.

3.1. Detecting Piano Keypresses

We could formulate the pressed key detection problem

as image classification, with the task of assigning (to each

video frame) a label indicating which notes are pressed

among the 88 piano keys. We could then use a state-of-

the-art image classification network (e.g. [37]), and train on

a dataset of people playing piano with labeled ground truth.

Such an approach could eventually achieve reasonable per-

formance, but would likely require a very large amount of

training data to see all reasonable combinations of keypress

events. Moreover, such a formulation would not exploit

other major sources of evidence like audio signals and hand

movements, both of which can provide information about

which notes are being played.
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Figure 1. Outline of our two-stream architecture. The top row is the original SSD model with the different base network to handle visual

stream input. We simply replace the VGG16 [29] with the Inception V3 [31] for getting more elaborate feature maps. The bottom row is

a four-layer CNN to handle audio stream. We employ MFCC for audio feature extraction, and take a late fusion approach to integrate the

audio and visual feature vectors. Since the audio features do not have the same spatial information as the visual features, we concatenate

them along the depth axis for each multi-resolution feature map after reshaping the audio features, and do not use the audio features to

compute localization loss. Our model is designed to focus on the piano key movements in single octaves, thus reducing the label space

from 88 keys to 12 keys.

3.1.1 Architecture

Instead of simply applying a standard image classification

model, we thus formulate the problem as multi-task learn-

ing with audio-visual data fusion. Our model focuses on the

movements of piano keys in a single octave (which contains

12 notes, 7 white and 5 black) and uses audio signals cor-

responding to the current image frame to boost the perfor-

mance of the classifier. Some important principles behind

our approach are the following: (1) Each complete octave

on the piano looks identical, differing only in its location

with respect to the piano as a whole; (2) audio signals help

resolve visual ambiguity caused by finger or key occlusions;

and (3) visual features help resolve aural ambiguities caused

by the interaction of complex harmonics.

Figure 1 shows the overall architecture of our model for

analyzing pianist accuracy and form. We extend the state-

of-the-art convolutional object detection network (SSD

[20]) for multi-task learning by adding an audio stream. We

define three tasks to identify key presses: (1) localization to

delimit octave segments of the piano, (2) pressed piano note

classification to identify played keys within a single octave,

and (3) octave classification to identify which octaves are

played at any given moment. Our model takes two inputs:

an image frame of a person playing the piano (taken from

above the keyboard), and a feature map representing the au-

dio signal corresponding to the image frame.

The audio feature map is constructed from 20-

dimensional Mel-Frequency Cepstral Coefficients

(MFCCs) features [21] for 100 millisecond segments

of video (which correspond to 6 consecutive frames of

video recorded at 60 frames per second). We obtain 9

temporal feature sets with 100 ms for the window size, and

then compute the first and second order derivatives of the

MFCC features to construct three channels analogous to

those of an RGB image. Each constructed audio feature

map thus has dimensionality 9 × 20 × 3. The videos are

recorded at a resolution of 1920 × 1080 from a camera

directly above the piano keyboard, but we resize the

original image frames to 300× 300 in preprocessing.

To integrate both visual and audio features, we take a late

fusion approach which concatenates two feature vectors im-
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mediately before the final score functions. We extract audio

features from the 3rd and 4th layers of the audio net, and

then concatenate audio features along the depth axis of the

multi-resolution image feature maps by reshaping them to

have the same size and dimensionality. We do this because

the proposed model separately predicts the confidences for

each default box in SSD, and the audio features should be

the same for all image subregions (since audio is related to

the entire image, not just a subset). Once audio-visual data

are concatenated, we employ 1 × 1 convolution to incorpo-

rate all features into the final decision.

We also employ audio-visual data fusion for octave clas-

sification. Since octave classification is not related to the

size of bounding boxes, we only use the last map from each

data stream’s multi-resolution feature maps to predict one

octave category at a time. We do not use audio features for

localization within single octaves, as these are more difficult

to reliably associate with a given octave.

3.1.2 Training

We extend the original objective function in SSD for han-

dling multi-task learning. The extended objective function

consists of three loss functions: (1) localization loss (Lloc),

(2) pressed piano note classification loss (Lkey), and (3) oc-

tave classification loss (Loct). The overall objective func-

tion is a weighted sum of these losses:

L(x, y, ckey, coct, l, g) =

1

N
(Lkey(x, ckey) + αLloc(x, l, g)) + βLoct(y, coct)

(1)

where N is the number of matched bounding boxes, x is

a binary indicator (0 or 1) for matching the default box to

the ground truth box of the ground truth pressed piano note

classification label of category p within a single octave, y is

a binary indicator for matching the input image frame with

the ground truth octave classification label of category q,

ckey and coct indicate confidence scores of pressed piano

note classification in single octave and octave classification

respectively, and l and g represent the locations of the pre-

dicted box and the ground truth box. We now define these

three losses in detail.

The keypress classification loss is a sigmoid function (in-

stead of the softmax of the original SSD) for multi-class,

multi-label classification,

Lkey(x, ckey) = −
N∑

i∈Pos

xp
ij log(ĉ

p
i )−

∑
i∈Neg

log(ĉ0i )

where ĉpi =
1

1 + exp(−cpi )
. (2)

Here, i and j represent the box number (i-th and j-th) of the

default box and the ground truth box respectively.

For the octave loss, we likewise use a sigmoid function

with cross-entropy loss,

Loct(y, coct) = −yq log(ĉq)− (1− yq) log(1− ĉq)

where ĉq =
1

1 + exp(−cq) . (3)

For the localization loss, we use the original localization

loss, which is a Smooth L1 function, to regress location pa-

rameters of the predicted bounding boxes,

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1(l

m
i − ĝmi )

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcyj − dcyi )/dhi

ĝwj = log

(
gwj
dwh

)
ĝhj = log

(
ghj
dhi

)
, (4)

(cx, cy) indicates the offsets for the center of the default

bounding box d, and w and h represent its width and height.

We set the weight terms α and β to 1 by cross validation.

3.2. Fingering Identification

3.2.1 Architecture

To identify which finger is pressing each note on the key-

board, we frame the problem as object detection and em-

ploy the same architecture as above, except without octave

classification or the audio stream (since audio signals pro-

vide no information about fingering). This problem is more

challenging because the fingers move rapidly and are com-

paratively small objects to detect. Furthermore, the appear-

ance of a given finger may be subject to variation caused by

hand posture changes and occlusion.

We propose to use the output of the first network—the

“key-pressed” information—to reduce the search space for

detecting fingers. We assume that the input videos are

recorded from a similar camera angle, and then use the key

pressed information to crop the input image frames based

on a rough locations of the pressed key on the piano. For

example, we can remove the very left and right sides of the

input image if our network estimates that middle C is being

played. In this paper, we crop out about 30% of the original

input image as a preprocessing phase, and then feed the re-

sulting cropped images to the network to identify fingering.

3.2.2 Training

One problem with the object detection formulation is that

it requires more expensive annotations because the net-

work needs bounding boxes during training. In order to
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assign annotations

Training
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Figure 2. The pipeline to create our dataset of Hanon Exercises.

reduce this annotation cost, we first train our network on

the publicly-available dataset of Bambach et al. [3], which

contains hundreds of hand instances with pixel-level ground

truth annotations in a variety of environments (albeit none

including pianos). We then apply that trained model on our

piano data to produce our own dataset for finger identifi-

cation. We assume that hands are located nearby in adja-

cent image frames, and thus use the bounding box from the

previous frame when the network trained on the EgoHands

dataset fails to detect hands in any given frame. We then

manually labeled each bounding box with the finger num-

ber(s) that are currently pressing keys, and train the pro-

posed network on this dataset.

3.2.3 Using Key Pressed Information

The above technique can be trained end-to-end from video

given ground truth finger labels, but this annotated data can

still be costly to collect. We thus also explored an alterna-

tive technique. If we assume that we know exactly which

keys are being pressed on the piano, either through MIDI or

a computer vision technique such as that described above,

we can then localize the coordinates of each key on the key-

board and each finger tip of the hand, and then estimate

which fingers are pressing which keys by calculating the

nearest fingertip (in image coordinate space) to each pressed

key. In more detail, first we obtain the coordinates of each

key based on a Hough transform of Sobel edges [30], us-

ing the approximate width of each key (which can be es-

timated based on the width of the keyboard). To infer the

positions of the finger tips, we use Simon et al.’s hand key-

point detector [28] which estimates the positions of 21 joints

of the hand. We then finally select the nearest finger to each

pressed key as our estimate of which finger is pressing it.

4. Experimental Results
We conducted two sets of experiments to evaluate the

proposed architecture and to compare to various baselines.

In the first set of experiments, we focus on testing the accu-

racy of our model for pressed piano notes detection. In the

second set of experiments, we evaluate the accuracy of our

approach for identifying fingers used to press notes.

camera

MIDI

Figure 3. Our piano room with an experimental setup and a sam-

ple Hanon exercise. We recorded MIDI files while a person was

playing the piano and then aligned them with music scores for an-

notating our dataset.

4.1. Datasets

We created new datasets of people playing the piano for

training and testing our techniques. Figure 2 shows the

pipeline that we used for generating our dataset given three

different input files recorded while people played the piano:

videos, MIDI files, and music scores. First, we extracted

image frames and audio from the input video, and then ap-

plied the pre-trained hand detector on image frames to ob-

tain bounding boxes of fingers. For the audio stream, we

extracted MFCC features with 100 ms windows, and con-

verted these into multi-channel images based on the first

and second order derivatives, as described above. We ex-

tracted keypress information from MIDI synchronized with

the video to create keypress ground truth labels. Finally, we

manually annotated finger numbers.

We collected two datasets, one consisting of piano exer-

cises and the other consisting of real pieces. For the former,

we used several Hanon Exercises [11], which have a long

history as technique-building exercises. Hanon exercises do

not present music of great artistic interest, but they cover a

wide range of the keyboard and systematically uses the en-

tire hand with frequently repeating patterns, yielding natu-

rally balanced and diverse data. Hanon is beneficial for fin-

ger identification ground truth collection for a similar rea-

son, since the exercises all have finger numbers denoted in

the score and are designed to exercise all five fingers evenly.

Figure 3 shows our experimental setup, as well as the first

few bars of Hanon Exercise number 1.

In particular, we collected two types of data with Hanon.

One Hand Hanon contains a total of 10 videos of a per-

son playing Hanon exercises 1 through 5 with one hand,

and each video clip ranges from 50 to 120 seconds. The

pianist played each exercise twice, once with the left hand

and once with the right. In total, we collected 35,332 frames

with ground-truth annotations. We split this dataset into five

sets according to the exercise number, trained our model

on exercises 1 to 3 (23,555 frames), and used the remain-

ing exercises 4 and 5 (11,777 frames) for evaluation. Two
Hand Hanon contains a total of 5 videos of a person play-

1509



Method Accuracy

Using a Single Sensory Input:

Video Only (Inception V3 [31]) 56.43%

Audio Only (Audio Net) 41.10%

Video and Audio Data Fusion:

Two-stream w/o Multi-Task (Inception V3 + Audio Net) 75.05%

Multi-Task Learning to focus on a Single Octave:

Video Only w/ Multi-Task (Inception V3 + Focusing a Single Octave) 82.37%

Two-stream w/ Multi-Task (Ours, Inception V3 + Audio Net + Focusing a Single Octave) 85.69%

Table 1. Pressed key detection accuracy on One Hand Hanon.

ing the same Hanon exercises 1 through 5 with both hands,

and each video clip ranges from 50 to 240 seconds. In total,

we collected 51,596 frames with ground-truth annotations.

Similar to the One Hand dataset, we split this dataset into

five sets with regard to the exercise number, and trained our

model on exercises 2 to 4 (36,115 frames) and evaluated

on exercises 1 and 5 (15,481 frames). Note that this is a

multi-label dataset for octave classification since the Hanon

Exercises have both hands playing at the same time, but in

different octaves.

Our second, more difficult dataset consists of six real

pieces often played by new pianists, at six different lev-

els of difficulty: Minuet by Alexander Reinagle, Minuet by

Johann Sebastian Bach, Russian Polka by Michael Glinka,

Melodie by Robert Schumann (Album für die Jugend Op.68

No.1), and Robert Volkmann Op.27 No.9. We had five pi-

anists record the pieces, including two professionals, two

with medium skill, and one beginner. We collected 65 min-

utes of video also at 60 fps, and annotated them frame by

frame for both notes and fingering using a combination of

MIDI and manual labeling.

4.2. Evaluation

4.2.1 Pressed Key Detection

We first evaluated the accuracy of the proposed architec-

ture for pressed key detection. We compared our pro-

posed multi-task video-audio fusion model with four differ-

ent baselines. (i) Video Only uses video frames as input; it

thus formulates the problem as a standard image classifica-

tion problem using Inception V3 [31]. (ii) Audio Only uses

just audio signals without image frames, using our Audio

Net which is a four layer CNN described in Figure 1. (iii)
Two-stream w/o Multi-Task uses audio-visual data fusion

without our multi-task formulation which is designed to fo-

cus on the key movements in a single octave. This baseline

uses Inception V3 and the Audio Net to handle each sen-

sory input separately, and then takes a late-fusion approach

for integrating both inputs. (iv) Video Only w/ Multi-Task
uses our multi-task formulation, but only uses video for de-

tecting the pressed keys.

We first measured classification accuracy, which is a

percentage of correctly classified images among all image

Method Accuracy

Using a Single Sensory Input:

Video Only (Inception V3 [31]) 46.33%

Audio Only (Audio Net) 39.63%

Video and Audio Data Fusion:

Two-stream w/o Multi-Task (Inception V3 + Audio Net) 65.33%

Multi-Task Learning to focus on a Single Octave:

Video Only w/ Multi-Task (Inception V3 + Focusing a Single Octave) 65.82%

Two-stream w/ Multi-Task (Ours, Inception V3 + Audio Net + Focusing a Single Octave) 75.37%

Table 2. Pressed key detection accuracy on Two Hands Hanon.

frames of the test set. Since our approach and the Video

Only w/ Multi-Task baseline can produce more than one

output at a time with different bounding boxes, we picked

the single predicted box that had the highest confidence

score in each image, and then assigned its predicted class

(pressed note) to the image for both approaches. In addi-

tion, we only accepted the image as a true positive when the

image was correctly classified in terms of both octave and

note within the octave. We trained our model using RM-

SProp [13] for 50k iterations with learning rate 10−4, 0.9

momentum, 0.9 decay, and batch size 32.

Table 1 shows the pressed key detection accuracy on the

One Hand Hanon dataset. We observe that our two-stream

approach with multi-task learning outperforms all baselines

in terms of accuracy. Our model yielded 85.69% pressed

key detection accuracy, and the experimental results con-

firm that our multi-task formulation and additional audio

stream are able to boost the performance of the classifier.

We next measured classification accuracy on the Two

Hands Hanon dataset. We used the same baselines, training

strategies, and hyperparameters for this experiment. How-

ever, we replaced the final softmax function of all baseline

approaches with the sigmoid function since the Two Hands

dataset requires multi-label classification (because it con-

tains two labels for each image). We picked the top two

predicted boxes based on the confidence scores, then as-

signed each image their predicted classes. Table 2 shows the

pressed notes detection results on this Two Hands Hanon

dataset. Once more, the results confirm that our approaches

outperform the performance of the baselines in terms of

classification accuracy. This suggests that our multi-task

formulation with audio-visual data fusion helped resolve

ambiguities that can be caused when using a single stream

only.

4.2.2 Fingering Identification

Our second set of experiments evaluated the accuracy of

identifying fingers used to press piano keys. For these

experiments, we trained our object detector on the One

Hand Hanon for detecting fingers, with and without a pre-

processing stage to crop the input image frame based on key

pressed information. We then measured used finger detec-
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Figure 5. The accuracy of the proposed approach to identify fin-
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pressed information) in terms of average precision. The x-axis

shows finger names and (l) and (r) indicate the left and right hand

respectively.

tion accuracy in terms of average precision.

Figure 5 presents finger detection accuracy of the two

approaches, showing that pressed note information is bene-

ficial. The network achieved better accuracy for all fingers

in terms of average precision when it used key pressed in-

formation. The model with the pre-processing step yielded

0.929 for mean average precison (mAP), significantly more

accurate than the model without key pressed information

(0.856 in mAP). Figure 4 shows some qualitative results for

both note detection and finger identication in Hanon exer-

cise #5. Most false detections arise during the transition

from one key to another.

Finally, we tried using our model trained on Hanon to de-

tect fingering on a completely different style of music, Cha-

conne by Yiruma, to see how it responds to new finger pos-

tures. The results of our fingering identification are shown

in Figure 6. The performance decreases, of course, due to

several challenges including black keys (whereas the Hanon

Exercises are only on white keys) and some large chords

which require very different hand postures from those found

in Hanon.

4.2.3 Fingering Identification with Hand Pose

Our third set of experiments evaluated the accuracy of iden-

tifying fingers with a stand-alone hand pose estimator [28],

as opposed to a network trained end-to-end, under the as-

sumption that we know exactly which keys are being played

at any moment in time.

We first applied this technique to our Hanon dataset, and

it could detect the correct fingerings in 99% and 96% of

the frames in one hand and two hands Hanon, respectively.

We then applied this technique to our second dataset of six

real piano pieces of different difficulties played by multiple

players, and it detected the correct fingerings in more than

90% of the frames in each video. Table 3 presents detailed

results in terms of precision, recall, and F1 score, show-

ing that the system has the lowest accuracy in the fourth

finger (ring finger). The confusion matrix in the Figure 7

shows that most confusion for the system happens between

adjacent fingers, and especially between the third and fourth

fingers. Figure 8(a) presents a sample failure case, where

the third and the fourth finger are very close to each other.

Crossovers also can confuse the system, for example when
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Figure 6. The accuracy of our fingering identification on a completely different style of music. In this case, our network often fails to

identify fingers used to press keys since the training dataset is played only on white keys and does not contain large chords.

Finger Precision Recall F1 Score

Thumb 0.939 0.943 0.941

Index 0.958 0.928 0.943

Middle 0.964 0.843 0.899

Ring 0.708 0.850 0.773

Little 0.916 0.941 0.929

Table 3. Precision, Recall and F1 score of finger identification with

hand pose.

Thumb

Index

Middle

Ring

Little

T
h
u
m
b

In
d
e
x

M
id
d
le

R
in
g

L
it
tl
e

Figure 7. Confusion matrix of finger detection.

(a) (b)
Figure 8. Two failure cases in detecting the fingering. (a) Confu-

sion between middle and ring finger because of vicinity of fingers.

(b) Confusion between thumb and index finger due to a crossover

and resulting occlusion.

the index finger crosses over (and thus occludes) the thumb

in order to play a note. Figure 8(b) shows an example of

this.

5. Conclusion
In this paper, we proposed a novel two-stream convolu-

tional neural network to determine which notes on a piano

are being played at any moment in time, and to identify the

fingers used to press those notes. We formulated this prob-

lem as multi-task learning with audio-visual fusion, and

characterized the accuracy of various variants of the tech-

nique.

The methods used for this study may be applied to other

musical instruments for building an interactive musical in-

strument tutoring system. Our current approach does not

utilize temporal information, which may help resolve am-

biguities and remove other errors. Moreover, we trained

our network separately on different datasets for each task

(pressed piano key detection and fingering identification);

building a unified model for both tasks and utilizing tem-

poral information to improve perception accuracy would be

a natural progression of this study as future work. Further-

more, research is also needed to provide interactive real-

time feedback to the student.
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